LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

FOURTH SEMESTER - APRIL 2023
UMT 4403 - MATHEMATICS FOR STATISTICS - II

Date: 04-05-2023
Time: 09:00 AM - 12:00 NOON

PART - A
Answer all the questions:

1. Define limit of a sequence.
2. Define bounded sequence.
3. What is absolute convergence of a series?
4. What is conditional convergence of a series?
5. When do we say that a function is monotone?
6. When do we say that a function is strictly increasing?
7. Is every differentiable function continuous? - Justify.
8. What is a derivative of a function at a point?
9. What is an upper sum of a function?
10. Define measure zero.

PART B

Answer any Five of the following:
11. a.) If $\left\{s_{n}\right\}_{n=0}^{\infty}$ is a sequence of non-negative numbers and $\lim _{n \rightarrow \infty} s_{n}=L$, then prove that $L \geq 0$.
b.) Determine the limit of the sequence $\left\{\frac{1}{(n+1)^{2}}\right\}_{n=0}^{\infty}$.
12. If $\left\{s_{n}\right\}_{n=0}^{\infty}$ is a sequence of real numbers which converges to L, then show that $\left\{s_{n}^{2}\right\}_{n=1}^{\infty}$ converges to L^{2}.
13. Prove that the series $\sum_{n=1}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$ if $0<x<1$ and diverges if $x \geq 1$.
14. If $\sum_{n=1}^{\infty} a_{n}$ converges to A and $\sum_{n=1}^{\infty} b_{n}$ converges to B then show that $\sum_{n=1}^{\infty} a_{n}+b_{n}$ converges to $A+B$ and $\sum_{n=1}^{\infty} c a_{n}$ converges to $c A$ where $c \in \mathbb{R}$.
15. If f is a non-decreasing function on the bounded open interval (a, b) and f is bounded above on (a, b), then show that $\lim _{x \rightarrow b^{-}} f(x)$ exist.
16. If f and g both have derivatives at $c \in \mathbb{R}$,then show that $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$ and $(f+g)^{\prime} c=f^{\prime}(c)+g^{\prime}(c)$.
17. State and Prove Taylor's Formula.
18. If $f \in \mathbb{R}[a, b], g \in \mathbb{R}[a, b]$, then prove that $f+g \in \mathbb{R}[a, b]$ and $\int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g$.
19. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are sequence of real numbers where $\lim _{n \rightarrow \infty} s_{n}=L$ and $\lim _{n \rightarrow \infty} t_{n}=M$ and $c \in \mathbb{R}$ then prove the following
a) $\lim _{n \rightarrow \infty} s_{n}+t_{n}=L+M$.
b) $\lim _{n \rightarrow \infty} c s_{n}=c L$.
20. Prove that if $\sum_{n=1}^{\infty} a_{n}$ be a series of nonzero real numbers. Let $a=\lim _{n \rightarrow \infty} \inf \left|\frac{a_{n+1}}{a_{n}}\right|$, and $A=\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n+1}}{a_{n}}\right|$ then
a) If $A<1$, then $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$
b) If $a>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges
c) If $a \leq 1 \leq A$, then the test fails.
21. State and prove Rolle's Theorem and use it to find a point c for the function $f(x)=(x-a)(b-x)$ such that $f^{\prime}(c)=0$.
22. a) If $f \in \mathbb{R}[a, b]$ and λ is any real number, then prove that $\lambda f \in \mathbb{R}[a, b]$ and $\int_{a}^{b} \lambda f=\int_{a}^{b} f$.
b) Evaluate $\int_{0}^{1}\left(2 x^{2}-3 x+5\right) d x$.

Marks)

