LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

FOURTH SEMESTER - APRIL 2023

UMT 4403 – MATHEMATICS FOR STATISTICS - II

Date: 04-05-2023 Dept. No. Max.: 100 Marks Time: 09:00 AM - 12:00 NOON PART – A $(10 \times 2 = 20)$ Answer all the questions: 1. Define limit of a sequence. 2. Define bounded sequence. 3. What is absolute convergence of a series? 4. What is conditional convergence of a series? 5. When do we say that a function is monotone? 6. When do we say that a function is strictly increasing? 7. Is every differentiable function continuous? – Justify. 8. What is a derivative of a function at a point? 9. What is an upper sum of a function? 10. Define measure zero.

PART B

11. a.) If $\{s_n\}_{n=0}^{\infty}$ is a sequence of non-negative numbers and $\lim_{n\to\infty} s_n = L$, then prove that $L \ge 0$.

(7 Marks)

 $(5 \times 8 = 40)$

- b.) Determine the limit of the sequence $\left\{\frac{1}{(n+1)^2}\right\}_{n=0}^{\infty}$. (3 Marks)
- 12. If $\{s_n\}_{n=0}^{\infty}$ is a sequence of real numbers which converges to *L*, then show that $\{s_n^2\}_{n=1}^{\infty}$ converges to L^2 .
- 13. Prove that the series $\sum_{n=1}^{\infty} x^n$ converges to $\frac{1}{1-x}$ if 0 < x < 1 and diverges if $x \ge 1$.
- 14. If $\sum_{n=1}^{\infty} a_n$ converges to A and $\sum_{n=1}^{\infty} b_n$ converges to B then show that $\sum_{n=1}^{\infty} a_n + b_n$ converges to A + B and $\sum_{n=1}^{\infty} ca_n$ converges to cA where $c \in \mathbb{R}$.
- 15. If f is a non-decreasing function on the bounded open interval (a, b) and f is bounded above on (a, b), then show that $\lim_{x\to b^-} f(x)$ exist.
- 16. If f and g both have derivatives at $c \in \mathbb{R}$, then show that (fg)'(c) = f'(c)g(c) + f(c)g'(c) and (f+g)'c = f'(c) + g'(c).
- 17. State and Prove Taylor's Formula.

Answer any Five of the following:

18. If $f \in \mathbb{R}[a, b], g \in \mathbb{R}[a, b]$, then prove that $f + g \in \mathbb{R}[a, b]$ and $\int_a^b f + g = \int_a^b f + \int_a^b g$.

1

PART – C

Answer any Two of the following:

$(2 \times 20 = 40)$

(15 Marks)

(5

19. If $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequence of real numbers where $\lim_{n\to\infty} s_n = L$ and $\lim_{n\to\infty} t_n = M$ and $c \in \mathbb{R}$ then prove the following

- a) $\lim_{n\to\infty} s_n + t_n = L + M$.
- b) $\lim_{n\to\infty} cs_n = cL$.

20. Prove that if $\sum_{n=1}^{\infty} a_n$ be a series of nonzero real numbers. Let $a = \lim_{n \to \infty} \inf \left| \frac{a_{n+1}}{a_n} \right|$, and

- $A = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right|$ then
 - a) If A < 1, then $\sum_{n=1}^{\infty} |a_n| < \infty$
 - b) If a > 1 then $\sum_{n=1}^{\infty} a_n$ diverges
 - c) If $a \le 1 \le A$, then the test fails.
- 21. State and prove Rolle's Theorem and use it to find a point c for the function f(x) = (x a)(b x)such that f'(c) = 0.

22. a) If $f \in \mathbb{R}[a, b]$ and λ is any real number, then prove that $\lambda f \in \mathbb{R}[a, b]$ and $\int_a^b \lambda f = \int_a^b f$.

b) Evaluate $\int_0^1 (2x^2 - 3x + 5) dx$.

Marks)

&&&&&&&&&&&&&